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Abstract

We investigate the optimal time-consistent use of foreign exchange interventions (FXI)

in a small open economy model driven by endowment and portfolio flow shocks, with

endogenous FX market depth and a lower bound constraint on FX reserves. In a

competitive equilibrium, large capital flows increase conditional exchange rate volatil-

ity and make FX markets more shallow. Unlike in the unconstrained case, the central

bank’s optimal interventions are not solely targeted at offsetting inefficient fluctuations

in the UIP premium but also incorporate a forward-looking element due to the risk

of depleting reserves. We show that this environment leads to optimal time-consistent

FXI policy that is highly state-dependent. FX sales are more effective than FX pur-

chases, and the policy may respond less or more than one-for-one to capital outflows,

depending on their size and the economy’s net foreign assets position. Adopting the

policy delivers sizable welfare gains, significantly exceeding those from a simple rule

directed at stabilizing current capital outflows, but only if the initial level of FX re-

serves is sufficiently high.
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1 Introduction

Volatile international capital flows are a significant concern for policymakers in small open

economies, especially in more shock-prone environments amid rising geopolitical tensions, as

noted in a recent speech by the IMF’s First Deputy Managing Director Gopinath (2024). In

shallow FX markets, capital flow volatility exacerbates exchange rate fluctuations, distort-

ing external financing conditions and impeding international risk-sharing. Foreign exchange

interventions (FXI) are a key policy tool that can potentially be employed to mitigate these

distortive effects, as emphasized by recent open economy literature (see e.g., Basu et al., 2020;

Adrian et al., 2022). However, when deciding on the corresponding intervention strategies,

policymakers must consider the risk of depleting FX reserves in the future, which brings

intertemporal considerations to the forefront. Thus, key questions pertaining to the imple-

mentation of FXI policies are about the extent to which portfolio flows should be offset, as

well as the average level of FX reserves associated with optimal interventions.

We address these and related questions by studying the use of FXI in a model with en-

dogenous FX market depth and a lower bound on FX reserves, akin to that of Itskhoki

& Mukhin (2023). In our framework, which is otherwise a standard small open economy

model, FX markets are shallow (i.e., not perfectly elastic) due to the presence of risk-averse

agents (dubbed financiers) who are exposed to FX risk when intermediating cross-border

capital flows. This market structure gives rise to endogenous deviations from the uncovered

interest rate parity (UIP) condition, with FX market depth depending negatively on con-

ditional exchange rate volatility. As a result, when exchange rate uncertainty is high, the

economy becomes particularly vulnerable to volatile capital flows, including those stemming

from non-fundamental swings in international investors’ appetite for domestic currency.

In such an environment, the central bank can use FX interventions to facilitate international

risk sharing and to mitigate inefficiencies due to financial intermediation frictions. As an

illustration, consider an exogenous fall in the demand for domestic currency, which we refer

to as a portfolio capital outflow shock. All else equal, financiers will accommodate the

excess supply by buying domestic currency assets, which they will finance by selling foreign

currency ones. Since these agents are risk-averse, and since the additional intermediation

increases their net long FX exposure to the domestic currency, therefore the UIP premium

increases and the domestic currency depreciates, compensating intermediaries for taking on

the additional risk. In line with the literature that we build on (Gabaix & Maggiori, 2015;

Itskhoki & Mukhin, 2021), FXI is effective since it affects the amount of funds intermediated

by financiers. In our capital outflow example, a sterilized FX intervention – i.e., a purchase of
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domestic currency bonds financed by a sale of foreign currency bonds – lowers the exposure of

financiers to the domestic currency, and hence mitigates the movement in the UIP premium.

Indeed, if this intervention could be conducted in an unconstrained fashion, it would be

optimal for the central bank to take on the role of financiers, since their intermediation

is costly from a social welfare perspective. Consequently, optimal FXI would fully offset

portfolio flow shocks and it would eliminate ex-ante UIP deviations, resulting in the best

possible allocation achievable, which we will refer to as the “first-best” (FB).1 In this scenario,

while the volatility of the exchange rate due to portfolio flow shocks would be fully eliminated,

optimal FXI policy would still allow the exchange rate to fluctuate, facilitating efficient

expenditure switching in response to fundamental shocks.

However, if the central bank’s ability to sell foreign currency bonds is limited, which is

equivalent to its stock of FX reserves being bounded from below, then FX interventions

may not be able to fully offset large capital outflows. Importantly, even if the monetary

authority was unconstrained at the time, it would have to take into account the fact that its

FX reserves may run out under some future scenarios. One consequence is that FX markets

become more shallow during episodes of portfolio outflows, as the conditional exchange rate

volatility is relatively more affected by non-fundamental forces. The optimal second-best

FXI policy also becomes more nuanced, as it is influenced by intertemporal considerations.

The primary contribution of our paper is an analytical and quantitative characterization

of optimal time-consistent FXI policy in the simple theoretical setup outlined above. The

reason we focus on this type of policy is that, as shown by Itskhoki & Mukhin (2023),

the presence of an occasionally binding constraint on reserves makes optimal plans under

commitment time-inconsistent.2 In contrast to that paper, which relies on a linear-quadratic

approximation of the equilibrium conditions, we solve the exact nonlinear policy problem

using a global and fully nonlinear solution algorithm.

The different approach we take has important consequences for our results. From a positive

perspective, our non-linear model can capture time-variation in conditional exchange rate

volatility, which increases (falls) whenever the exchange rate depreciates (appreciates). This

pattern is consistent with empirical evidence on the behavior of currencies during risk-off

episodes (De Bock & de Carvalho Filho, 2015). On the normative side, we demonstrate

that optimal time-consistent policy deviates from perfectly stabilizing the UIP risk premium

1Our model assumes incomplete financial markets, with risk-free bonds being the only traded assets,
which also restricts international risk sharing. In line with the literature, however, we shall assume that
policymakers take the structure of international financial markets as given.

2Expressed alternatively, such policies are less appealing as – in the absence of an effective commitment
device – they lack credibility, with reneging being optimal ex post.
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mainly to facilitate intermediation in potentially constrained future states, thus relaxing

the implicit borrowing limit faced by the domestic economy. Interestingly, this may imply

holding less FX reserves compared to the first-best if capital outflows are relatively mild

and expected to abate. However, the focus shifts to maintaining a precautionary level of

reserves when outflows intensify, in which case optimal policy chooses not to offset them

completely, even if the current level of FX reserves makes full contemporaneous stabilization

possible. This precautionary motive crucially depends on endogenously varying FX market

depth,3 which the central bank can influence by “keeping the powder dry”, i.e., hoarding

FX reserves so that they can be used to lean against future capital outflows. In the case of

portfolio inflows, since the lower bound on FX reserves is not a concern, the optimal policy

resembles the first-best, in which portfolio capital inflows are matched by buying FX reserves

approximately one-for-one.

In the quantitative part of our analysis, we calibrate the model to Malaysia, a small open

economy that actively uses FXI to manage its exchange rate. We back out the exogenous

process for portfolio flows by applying the UIP condition from the model to the data. Our

quantitative results confirm that the optimal time-consistent FXI policy reacts differently

to small capital outflows than to large ones. While the theoretical model suggests that

the optimal intervention could be more than one-for-one in some circumstances, this case

turns out to be quantitatively negligible as the precautionary motive to hoard reserves clearly

dominates. We additionally find that – if FX interventions are conducted optimally – then FX

purchases tend to affect the real exchange rate by less than FX sales of the same magnitude.

This is because purchases occur in periods of portfolio inflows, which are associated with

relatively deep FX markets, while sales coincide with portfolio outflows, when FX markets

are endogenously shallower.

According to our model, while the standard deviation of the estimated portfolio flow process

amounts to 4% of annual GDP, the average level of FX reserves in the optimal time-consistent

policy regime is around 5% of GDP. This relatively low level of reserves, coupled with the

aforementioned intervention rules, ensures that the unconditional probability of running out

of reserves is merely 2%. The policy also reduces the volatility of the exchange rate relative

to the no-intervention regime, but it does not fully stabilize it, allowing the exchange rate

to induce expenditure switching. Relatedly, FX markets end up significantly deeper when

the policymaker intervenes optimally, meaning that the economy is better insulated from

inefficient fluctuations brought about by swings in the appetite for domestic currency.

3In existing quantitative models (Itskhoki & Mukhin, 2021; Adrian et al., 2022; Davis et al., 2023, and
others), FX market depth is constant and typically captured by a calibrated parameter.
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Finally, we compute the welfare gains associated with adopting the optimal time-consistent

FXI policy, relative to a counterfactual of no intervention, and assuming that the initial FX

reserves correspond to their average value historically observed in Malaysia. The gains turn

out to be sizable, amounting to 0.25% of permanent steady-state consumption, coming fairly

close to those associated with the first-best policy, which establishes their upper bound at

0.29%. These gains are also significantly larger than those implied by a simple static FXI

rule, which aims at offsetting current capital flows and hence eliminating the ex ante UIP

premium unless FX reserves are fully depleted. However, a significant part of the welfare

benefit under the optimal time-consistent policy derives from the gradual decumulation of

reserves, as these are initially excessive from the perspective of our model. When these

transition gains are controlled for, welfare differences narrow considerably and the optimal

time-consistent policy may even be slightly outperformed by commitment to the simple rule

responding contemporaneously to capital flows.

Related Literature The theoretical foundation that gives rise to FXI efficacy in open

economy models like ours is segmentation in international financial markets. Within a two-

country dynamic general equilibrium framework, Devereux & Sutherland (2010) present an

approximation method for characterizing time-varying equilibrium portfolios. Gabaix &

Maggiori (2015) and Itskhoki & Mukhin (2021) provide microfounded models of a portfolio

balance channel in currency markets, where some of the underlying ideas can be traced back

to Kouri (1976). Similarly to Cavallino (2019), the role of FXI in our model is to address

the associated friction by stabilizing UIP deviations, thus smoothing inefficient fluctuations

in external financing conditions. This is consistent with the role played by FXI in models

with multiple policy tools such as Itskhoki & Mukhin (2023) and the IMF’s Intergrated

Policy Framework (Basu et al., 2020; Adrian et al., 2022). Other related studies include

Davis et al. (2023), Arce et al. (2019), Chang (2018), and Jeanne & Rancière (2011), who

examine the macroprudential use of FXI to prevent sudden stops in emerging economies.

Fanelli & Straub (2021) stress the forward guidance component of FX interventions and its

time-inconsistency, while Babii et al. (2025) study global consequences of using this policy

by a group of countries. Amador et al. (2020) and Cwik & Winter (2024) argue that FXI

can function as an effective unconventional monetary policy tool when interest rates are at

the effective lower bound (ELB) and when appreciation pressures persist. Bacchetta et al.

(2023) complement this literature by analyzing the costs of FXI in economies with safe haven

currencies, emphasizing the importance of distinguishing between UIP and CIP deviations.

While arguably highly relevant in policy circles, constraints on FX reserve holdings have

attracted only limited attention in the academic literature. One of the few exceptions is

5



Basu et al. (2018), who examine the optimal use of FXI under limited reserves in a semi-

structural setup where the policy objective is assumed to be exchange rate stabilization.

Similarly to our work, they show that the lower bound on reserves renders optimal policy

time inconsistent, and that simple intervention rules can outperform discretionary policies. A

more recent paper developing a structural model closely related to ours is that of Itskhoki &

Mukhin (2023). The authors use a linear-quadratic approximation to examine optimal FXI

when reserve holdings are constrained, finding that it prescribes more aggressive interventions

compared to first-best. In contrast, the adoption of a fully non-linear framework allows us to

show that the motive they highlight is typically dominated by precautionary considerations,

which imply responding less than one-for-one to capital outflows.

The effectiveness of FXI in our model critically depends on FX market depth (i.e., the

elasticity of currency demand), the estimation of which has been a key focus in the empirical

literature (Chen et al., 2023; Hertrich & Nathan, 2023; Adler et al., 2019; Fratzscher et al.,

2019; Blanchard et al., 2015; Fatum & M. Hutchison, 2003, among others). Major difficulties

for these studies stem from limited availability of non-confidential, high-frequency data on

foreign exchange interventions, as well as considerable identification issues. Progress has

been made in this regard by Adler et al. (2025), who construct a comprehensive set of FXI

proxies on a monthly and quarterly basis, which we leverage when calibrating our model.

Beltran & He (2024), Pandolfi & Williams (2019) and Broner et al. (2021) exploit exogenous

changes in portfolio weights of benchmark indices of local-currency sovereign debt to infer

the sensitivity of the exchange rate to capital flows. Maggiori (2022) discusses promising

directions in this line of research.

Methodologically, our paper connects to the literature that computes decentralized and

constrained-efficient equilibria in small open economies with occasionally binding constraints

using global methods (Mendoza, 2010; Bianchi, 2011; Bianchi & Mendoza, 2018; Schmitt-

Grohé & Uribe, 2016, 2021; Davis et al., 2023, and others). Similarly to Bianchi & Mendoza

(2018), for example, we rely on time iteration of the Euler equation, and we focus on char-

acterizing optimal time-consistent policy.

Outline The remainder of this paper is structured as follows. Section 2 presents the model.

The optimal FXI problem is analyzed in Section 3. Section 4 discusses the results of the

quantitative analysis and Section 5 evaluates the welfare implications. Finally, Section 6

concludes by summarizing the key findings.
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2 Model

This section outlines a standard small open economy model with stochastic endowments,

which we extend with a segmented international financial sector that consists of financiers,

portfolio investors and the central bank, as in Itskhoki & Mukhin (2023). We first describe

the decentralized equilibrium in which the central bank does not engage in FXI, before

characterizing the constrained-efficient equilibrium in which the central bank follows a dis-

cretionary, time-consistent FXI policy that faces a lower bound on FX reserves.

2.1 Outline

Utility Function Consider an economy that is populated by a large number of identical,

infinitely-lived households with preferences described by the following utility function

∞∑
t=0

E0

[
βtu (CT,t, CN,t)

]
,

where

u(CT,t, CN,t) =
1

1− σ

Ü[
α (CT,t)

ξ−1
ξ + (1− α) (CN,t)

ξ−1
ξ

] ξ
ξ−1︸ ︷︷ ︸

Ct

ê1−σ

.

Households derive utility from total consumption Ct that consists of tradable goods CT,t

and nontradable goods CN,t. Furthermore, β ∈ (0, 1) denotes the subjective discount factor,

1/σ is the intertemporal elasticity of substitution, ξ is the elasticity of substitution between

tradable and nontradable goods, and α ∈ (0, 1) controls the share of tradables in the total

consumption basket.

Households’ Budget Constraint Each period t, households receive stochastic endow-

ments of tradable and nontradable goods, denoted by YT,t and YN,t, respectively. The en-

dowments are exogenous and follow a first-order Markov process. Furthermore, households

have access to a one period local currency bond Bt that pays gross nominal interest rate Rt.

A representative household’s sequential budget constraint is then given by

PT,tCT,t + PN,tCN,t ≤ PT,tYT,t + PN,tYN,t −Bt +Bt−1Rt−1 +ΠM,t +ΠF,t +ΠP,t

where ΠM,t, ΠF,t and ΠP,t denote the profits of the central bank, financiers and portfolio

investors, respectively. Note that this formulation of the budget constraint implies that the
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financial sector (i.e. financiers and portfolio investors) is fully domestically owned.4

We assume that the law of one price holds for tradable goods and we normalize the price level

abroad to unity, so that the price of tradables equals the nominal exchange rate PT,t = Et.
As we explain below, the price of nontradables is additionally normalized to unity (PN,t = 1),

so that Et can also be interpreted as the relative price of tradable goods.

Households’ Optimality The choice of Bt is characterized by the household Euler equa-

tion:

RtEt

ï
Θt+1

Et
Et+1

ò
= 1, (1)

where Θt+1 denotes the stochastic discount factor (SDF) of domestic households

Θt+1 = β
u1(CT,t+1, CN,t+1)

u1(CT,t, CN,t)
= β

Å
Ct+1

Ct

ã 1−σξ
ξ
Å
CT,t+1

CT,t

ã− 1
ξ

.

In addition, combining the first-order conditions with respect to CT,t and CN,t allows us to

obtain the equilibrium expenditure switching condition, which pins down the exchange rate

Et =
u1 (CT,t, CN,t)

u2 (CT,t, CN,t)
=

α

1− α

Å
CN,t

CT,t

ã 1
ξ

. (2)

Financiers Financiers intermediate funds by holding a zero capital portfolio of foreign

currency bonds B∗
F,t and local currency bonds BF,t such that BF,t+EtB∗

F,t = 0. They exhibit

mean-variance preferences of the form

Et

î
Θt+1R̃

∗
t+1B

∗
F,t

ó
− ω

2
vart

Ä
R̃∗

t+1B
∗
F,t

ä
.

Note that the SDF of domestic households Θt+1 enters the objective function of financiers

and that ω > 0 measures the (additional) degree of financiers’ risk aversion. Moreover, R∗ is

the (constant) world interest rate and R̃∗
t+1 = R∗ −Rt

Et
Et+1

denotes the carry trade return in

foreign currency from period t to t+ 1. The first-order condition with respect to B∗
F,t yields

the following risk-augmented UIP condition

RtEt

ï
Θt+1

Et
Et+1

ò
−R∗Et [Θt+1] =

Risk-Sharing Wedge︷ ︸︸ ︷
−ωσ2

tB
∗
F,t , (3)

where σ2
t = R2

t vart
Ä

Et
Et+1

ä
. The ex-ante UIP deviation, defined in Equation 3 as the excess

4We discuss the rationale and implications of this assumption in Section 3.
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return on domestic currency – which can also be interpreted as the international risk-sharing

wedge – is driven by the amount of funds intermediated by financiersB∗
F,t and the depth of FX

markets ωσ2
t > 0. The higher the long exposure of financiers to domestic currency assets (i.e.,

the more negative B∗
F,t), the higher the compensating excess return they require. Also note

that a higher (lower) ωσ2
t corresponds to shallower (deeper) FX markets, implying greater

(lower) sensitivity of the exchange rate to capital flows. Importantly, FX market depth

is endogenously state-dependent, with its variation driven by changes in the conditional

exchange rate volatility σ2
t . Finally, the domestic currency profits of financiers in period t

are given by ΠF,t =
Ä
Rt−1 −R∗

t−1
Et

Et−1

ä
BF,t−1.

Portfolio Investors Similar to financiers, portfolio investors hold a zero capital portfolio

(B∗
P,t, BP,t) such that BP,t+EtB∗

P,t = 0. However, they are modeled as non-optimizing agents

who randomly buy (sell) foreign currency bonds B∗
P,t > 0 (B∗

P,t < 0) and sell (buy) domestic

currency bonds BP,t < 0 (BP,t > 0). More precisely, B∗
P,t is exogenous and follows a first-order

Markov process. The profits of portfolio investors are ΠP,t =
Ä
Rt−1 −R∗

t−1
Et

Et−1

ä
BP,t−1.

Central Bank The monetary authority engages in sterilized FXI by adjusting its stock of

foreign reserves B∗
M,t and sterilization bonds BM,t such that BM,t + EtB∗

M,t = 0. Crucially,

the policy is subject to a lower bound constraint on reserves (LBR), which – to fix attention

– we set to zero, but which could easily be set at a different level instead

B∗
M,t ≥ 0.

The central bank’s profits from its bond portfolio are ΠM,t =
Ä
Rt−1 −R∗

t−1
Et

Et−1

ä
BM,t−1. As

already alluded to, we also assume that the central bank’s interest rate policy fully stabilizes

nontradable goods prices, which allows us to normalize their level to unity.5

Bond Market Clearing Overall, market clearing in the domestic bond market requires

BF,t +Bt +BP,t +BM,t = 0,

with the net foreign asset (NFA) position in foreign currency defined as

B∗
t = B∗

F,t +B∗
M,t +B∗

P,t, (4)

which implies B∗
t = Bt/Et by domestic bond market clearing combined with the balance

5This assumption can be understood as capturing the traditional interest rate policy motive arising from
nominal rigidities without explicitly modeling them. More specifically, if prices in the nontradable sector were
sticky, then monetary policy that perfectly stabilized them would implement the flexible price equilibrium.
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sheet equations of the financial sector.

Resource Constraint In equilibrium, consumption of nontradable goods must equal their

endowment

CN,t = YN,t. (5)

Consolidating the household’s budget constraint by exploiting equation (5) and the expres-

sion for the profits of the financial sector yields the following economy-wide resource con-

straint

B∗
t −B∗

t−1R
∗ = YT,t − CT,t. (6)

This equation implies that, at the aggregate level, the domestic economy is borrowing in

foreign currency at the world interest rate, which, in turn, follows from the assumption of

full domestic ownership of the financial sector.

2.2 Decentralized and Constrained-Efficient Equilibrium

Decentralized Equilibrium Having outlined the model, we now define the decentralized

equilibrium, in which the central bank does not conduct FX interventions and does not hold

any FX reserves.

Definition 1 (Decentralized Equilibrium without FX Interventions). Given exogenous pro-

cess {B∗
P,t, YT,t, YN,t}∞t=0 and initial condition B∗

−1, a competitive equilibrium is a sequence

of prices {Et, Rt}∞t=0 and implied conditional exchange rate volatility {σ2
t }∞t=0, allocations

{CT,t, CN,t}∞t=0, bond positions {B∗
t , B

∗
F,t}∞t=0, and FXI policy {B∗

M,t}∞t=0 such that:

1. Households and financiers optimize, implying (1), (2), and (3)

2. The central bank holds no FX reserves, ∀t : B∗
M,t = 0

3. Goods and bond markets clear, implying (5), (6), and (4)

4. The transversality condition on net foreign assets holds

lim
T→∞

B∗
T

(R∗)T
= 0.

Constrained-Efficient Equilibrium We next describe the problem of a central bank

that optimally conducts FX interventions and we define the associated equilibrium. We

assume that every period t the central bank chooses FX reserves B∗
M,t in a discretionary
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fashion, unable to credibly commit to future actions. At the same time, the intervention

policy is fully time-consistent as the effects of current actions on future optimal decisions are

entirely accounted for. Consequently, the policy problem can be formulated as follows

max
{CT,t,B

∗
t ,Et,Rt,B∗

M,t,σ
2
t }
Et

∞∑
s=0

βt+s [u(CT,t+s, YN,t+s)] (7)

subject to the constraints

Rt+sEt+s

ï
Θt+s+1

Et+s

Et+s+1

ò
= 1 (Household Euler Equation)

Et+s =
u1(CT,t+s, YN,t+s)

u2(CT,t+s, YN,t+s)
(Expenditure Switching)

B∗
t+s −B∗

t+s−1R
∗ = YT,t+s − CT,t+s (Resource Constraint)

R∗Et+s [Θt+s+1] = 1 + ωσ2
t+s

(
B∗

t+s −B∗
M,t+s −B∗

P,t+s

)
(International Risk Sharing)

σ2
t+s = R2

t+svart+s

Å Et+s

Et+s+1

ã
(Cond. Exchange Rate Volatility)

B∗
M,t+s ≥ 0 (Constraint on Reserves)

This allows us to arrive at the following definition of a constrained-efficient equilibrium.

Definition 2 (Constrained-Efficient Equilibrium with FX Interventions). Given the exoge-

nous process {B∗
P,t, YT,t, YN,t}∞t=0 and initial condition B∗

−1, a constrained-efficient equilibrium

is a sequence of prices {Et, Rt}∞t=0 and implied conditional exchange rate volatility {σ2
t }∞t=0,

allocations {CT,t, CN,t}∞t=0, bond positions {B∗
t , B

∗
F,t}∞t=0 and FXI policy {B∗

M,t}∞t=0 such that:

1. Households and financiers optimize, implying (1), (2), and (3)

2. The central bank solves the policy problem (7)

3. Goods and bond markets clear, implying (5), (6), and (4)

4. Transversality condition on net foreign assets holds

lim
T→∞

B∗
T

(R∗)T
= 0.

3 Optimal FX Interventions

We proceed by analytically studying the optimal time-consistent use of FXI in the model

described in Section 2. We first characterize the first-best and next describe the key re-
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sults obtained from the analysis of the second-best policy. The proofs of all theorems and

propositions presented in this section can be found in Appendix A.

First-best If households had direct, frictionless access to foreign currency bonds, the first-

order condition associated with that asset would be

R∗Et [Θt+1] = 1. (8)

It is straightforward to show that this condition holds in the constrained-efficient equilibrium

without an LBR as long as the financial sector is entirely owned by domestic households,

which implies that the economy effectively borrows at the foreign interest rate. The associ-

ated optimal FXI policy is characterized by

B∗
M,t = B∗

t −B∗
P,t, (9)

which fully eliminates the international risk-sharing wedge. In particular, the central bank

responds one-for-one to fluctuations in the demand for domestic currency, making costly

intermediation provided by financiers redundant (B∗
F,t = 0).6

It should be noted that strict stabilization of the UIP premium would no longer be optimal if

we allowed financial market participants to be at least partially foreign owned. In that case,

the central bank would lean against capital flows less than one-for-one, making systematic

profits on FX reserve management at the expense of agents living in the rest of the world

(see also Itskhoki & Mukhin, 2023; Adrian et al., 2022, for a more comprehensive discussion).

Financial Conditions under second-best In the presence of an LBR, the central bank

is generally unable to completely eliminate the risk-sharing wedge in all states, in contrast

to first-best. One can easily imagine a situation in which the economy holds a relatively

large amount of debt, or faces a sizable portfolio outflow, such that Bt − B∗
P,t < 0 and the

LBR binds. Before we fully characterize the optimal FXI policy in such circumstances, it is

useful to spell out two key implications of this equilibrium for the financial conditions faced

by the small open economy. These are summarized in the following Proposition:

Proposition 1. Consider an equilibrium in period t with a binding LBR (B∗
t −B∗

P,t < 0) and

where a portfolio outflow is associated with an improvement in the net foreign asset position

(∂B∗
t /∂B

∗
P,t > 0). Then, the equilibrium exhibits the following properties:

(a) ∂σ2
t /∂B

∗
P,t > 0: A portfolio outflow leads to an elevated conditional volatility of the

6A corollary is that the first-best in an economy affected solely by portfolio shocks is associated with no
exchange rate uncertainty, i.e., it corresponds to a peg with σ2

t = 0.
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exchange rate.

(b) ∂Et [Θt+1] /∂B
∗
P,t < 0: A portfolio outflow leads to an expected decrease of the stochastic

discount factor between periods t and t+ 1.

The crucial relationship underpinning Proposition 1 is that we consider an economy in which

portfolio outflows generate an improvement in the net foreign asset position. While this

appears to be the empirically relevant case, we also characterize sufficient conditions for

this relationship to hold in Appendix A, which additionally contains a proof of Proposition

1. Intuitively, if the LBR is binding, a portfolio outflow cannot be fully offset by selling

FX reserves. Then, by the bond market clearing condition (4), for the NFA position of

the economy not to increase, all of the resulting imbalance would have to be absorbed by

financiers. However, that implies a tightening of the financial conditions, since financiers

require a higher premium when their domestic currency exposure increases. This in turn

incentivizes households to increase their savings and it translates into an improvement in

the country’s net foreign asset position.

Under the conditions specified in Proposition 1, state-dependent FX market depth ωσ2
t

magnifies the impact of portfolio outflows on the risk sharing wedge. Intuitively, a portfolio

outflow that cannot be fully offset by an FX intervention causes a positive UIP deviation

not only through its impact on the amount of funds that must be intermediated by the

financiers, but also by increasing the likelihood that an outflow in the following period

would not be fully offset either. The latter implies an endogenous increase in the conditional

volatility of the exchange rate, meaning higher riskiness of the financiers’ balance sheets, for

which they have to be compensated. The associated higher UIP wedge tightens households’

financial conditions, as they can only borrow at a greater premium over the foreign interest

rate. These tighter conditions thus decrease consumption of tradable goods, and so imply

a higher marginal utility today compared to tomorrow. As a result, the stochastic discount

factor decreases.

Implicit Borrowing Limit One interesting consequence of the lower bound on FX re-

serves is that it imposes an upper bound on the country’s net foreign liabilities, thus consti-

tuting an implicit borrowing limit that may constrain optimal policy. To see this, combine

the international risk sharing condition (3) with the LBR to obtain

B∗
t ≥ B∗

P,t −
1

ωσ2
t

(1−R∗Et [Θt+1]) ≡ Ψt. (10)

We can hence reformulate the second-best in terms of a consumption smoothing problem

13



subject to this additional constraint.

The borrowing limit Ψt has two components: The first one is represented by exogenous

portfolio outflows B∗
P,t, which increase Ψt and thus make the borrowing limit tighter. The

second term corresponds to the financiers’ domestic currency lending position (expressed in

foreign currency), and it decreases Ψt whenever the LBR is binding, i.e., when R∗Et [Θt+1] <

1. Due to their mean-variance preferences, the financiers’ position in equilibrium is a function

of the expected excess return on domestic currency 1−R∗Et [Θt+1] and the risk factor ωσ2
t . If

either the expected return increases and/or the risk factor decreases, financiers are willing to

lend more in domestic currency. In so doing, they relax the implicit borrowing limit affecting

optimal policy. Furthermore, optimal FX reserves simply reflect the difference between net

foreign assets and the borrowing limit, i.e., B∗
M,t = B∗

t − Ψt. In particular, the borrowing

limit is binding (B∗
t = Ψt) if and only if the central bank runs out of reserves (B∗

M,t = 0).

Value of Commitment and Time Inconsistency of Optimal Plans One important

feature of the implicit borrowing limit given by equation (10) is that it is forward-looking.

More specifically, it depends on the conditional volatility of the exchange rate and on the

stochastic discount factor that households use to evaluate future flows, both of which depend

on expectations formulated at time t about events at time t + 1. If the central bank could

credibly commit to future FX interventions, it could steer these expectations in a way that

would relax the current-period borrowing limit whenever it became binding. Such a policy

would thus resemble “forward guidance” about the future path of interest rates, which, in a

New Keynesian setup, can effectively mitigate the consequences of the effective lower bound

(ELB) on the policy rate.

However, and as in the New Keynesian ELB case, committing to future interventions is not

time-consistent: once new shocks materialize, it is optimal for the central bank to reoptimize,

possibly reneging on past promises. For this reason, in the remainder of our analysis, we

mainly focus on fully time-consistent but discretionary FX intervention policies.

Intertemporal Tradeoffs under second-best The first order condition associated with
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the second-best policy problem is given by

u1,t = βR∗Et [u1,t+1] (FB)

+ λt

Å
1− 1−R∗Et [Θt+1]

ω(σ2
t )

2

∂σ2
t

∂B∗
t

− R∗

ωσ2
t

Et

ï
∂Θt+1

∂B∗
t

òã
(≥ 0)

− βEt

ñ
λt+1

1−R∗Et+1 [Θt+2]

ω
(
σ2
t+1

)2 ∂σ2
t+1

∂B∗
t

ô
(≥ 0)

− βEt

ï
λt+1

R∗

ωσ2
t+1

Et+1

ï
∂Θt+2

∂B∗
t

òò
(≤ 0)

(11)

where u1,t ≡ u1 (CT,t, YN,t), and where λt denotes the Lagrange multiplier associated with

the implicit borrowing constraint (10).7

Several observations are in order. First, if the lower bound on reserves is never binding

(∀t, λt ̸= 0), then the optimality condition (11) reduces to the first line and becomes equiv-

alent to the first-best characterized by equation (8). An implication is that under such

circumstances the central bank would be able to perfectly eliminate the international risk

sharing wedge. The second line in equation (11) corresponds to the case of insufficient FX

reserves today. An economy that hits the LBR at time t (so that λt > 0) experiences a tight-

ening in financial conditions (UIP premium becomes positive), is forced to borrow less, and

hence needs to restrict its consumption. Finally, the last two lines of equation (11) illustrate

how the possibility of the LBR becoming binding in the future (λt+1 > 0 in some states)

affects the allocations chosen by the optimizing central bank today, even if the current level

of FX reserves is positive. These forward-looking motives of the optimal FXI policy reflect

the fact that the central bank internalizes the effects of the economy’s current savings on the

future financial conditions arising from the presence of the implicit borrowing constraint.

Interestingly, there are two opposing forces at play here. The term in the third line arises

since the economy’s savings decisions in period t affect the future conditional exchange rate

volatility σ2
t+1. While each individual household takes this risk factor as given, the planner

internalizes how conditional volatility is affected by economy-wide savings. It can be shown

that
∂σ2

t+1

∂B∗
t
< 0, which means that if the economy saves more today, then the future conditional

exchange rate volatility decreases. This is because higher current net foreign assets imply

that lower FX interventions are required to prevent an increase in the international risk-

sharing wedge for a given portfolio capital outflow. As a result, the probability that any

outflow will not be fully neutralized due to insufficient FX reserves decreases, which implies

a lower expected impact of non-fundamental shocks on next period’s exchange rate. Since

7The complementary slackness conditions are λt ≥ 0, B∗
t −Ψt ≥ 0, (B∗

t −Ψt)λt = 0.
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1 − R∗Et [Θt+2] > 0 whenever FXI policy is constrained in period t + 1 (λt+1 > 0), the

third line of equation (11) is positive, meaning that saving more today brings the benefit of

a less binding implicit borrowing limit tomorrow, due to compressed conditional exchange

rate volatility.

On the other hand, the last line in equation (11) captures the effect of aggregate savings on

the household’s period t + 1 stochastic discount factor, which financiers use to weigh their

future profits. Again, an individual household does not take into account the effect of its

intertemporal decisions on Θt+2. However, the central bank internalizes the fact that higher

savings in period t support tradable consumption in the future, thus increasing the aggregate

stochastic discount factor in the following period. Accordingly, ∂Θt+2

∂B∗
t
> 0. Note that higher

Θt+2 decreases the expected excess return on domestic currency 1− R∗Et [Θt+2], and hence

financiers’ expected profits, hindering their capacity to intermediate. As a result, the fourth

line of equation (11) is negative, highlighting the fact that saving more today can indirectly

tighten the implicit borrowing limit next period by compressing financiers’ expected profits

and thus amplifying the associated intermediation friction.

Optimal Time-Consistent FXI under second-best We have seen above that the opti-

mizing central bank internalizes two opposing effects of aggregate savings — represented by

the economy’s net foreign assets position – on the implicit borrowing limit in the next period.

The optimal FXI policy in period t is guided by whichever of the two motives dominates, as

summarized in the following theorem

Theorem 1. If the use of FXI is unconstrained in period t (λt = 0) but the LBR is possibly

binding in period t+ 1 (Et [λt+1] > 0), then the optimal time-consistent FXI policy in period

t is given by

B∗
M,t = B∗

t −B∗
P,t +

βR∗

ωσ2
t u1,t

Et

ï
λt+1

Å−u11,t+1

u1,t+1

ãÅ
3
(
B∗

P,t+1 −B∗
t+1

)
− 1

ωσ2
t+1

ãò
, (12)

which calls for a smaller (larger) intervention relative to the first-best if the third term on

the RHS is positive (negative).

Theorem 1 states that the optimal intervention in period t in anticipation of a binding LBR

in period t + 1 can either be liquidity-injecting, in the sense that the central bank decides

to hold less reserves compared to the first-best (B∗
M,t < B∗

t − B∗
P,t), or liquidity-absorbing

to the extent that the central bank stocks more reserves (B∗
M,t > B∗

t − B∗
P,t).

8 If the LBR

8The level of FX reserves directly influences liquidity in domestic bond markets, as interventions are
conducted in a sterilized manner. Compared to the first-best, the central bank is a net buyer of domestic
bonds in the former case and a net seller in the latter case.
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is expected not to bind in any possible states in period t + 1, the optimal intervention in

period t corresponds to the first-best.

To grasp the intuition behind Theorem 1, recall that the risk sharing wedge provides a

read on the severity of the intermediation friction in our model. While it can always be

completely eliminated in the first-best, this may not be feasible in the second-best case.

By definition, a period t + 1 characterized by a binding LBR is associated with negative

intermediated funds B∗
F,t+1 = B∗

t+1−B∗
P,t+1 < 0 and consequently also a positive risk sharing

wedge −ωσ2
t+1B

∗
F,t+1 > 0. The aim of the second-best policy in this context is to relax

the implicit borrowing limit by facilitating intermediation by financiers. Recall that the

intermediated funds at time t+1 depend positively on the expected return 1−R∗Et+1 [Θt+2]

and negatively on the risk factor ωσ2
t+1. The central bank can affect both of these variables

by engaging in FXI in period t. A liquidity-injecting intervention B∗
M,t < B∗

t − B∗
P,t can

increase the expected return 1 − R∗Et+1 [Θt+2] and thereby increase financiers’ capacity

to lend to domestic households in the possibly constrained period t + 1. Conversely, a

liquidity-absorbing intervention B∗
M,t > B∗

t − B∗
P,t can decrease the conditional volatility of

the exchange rate σ2
t+1, making financiers more willing to lend.

Precautionary Accumulation of FX Reserves The presence of a liquidity-absorbing

intervention motive is the key difference between our analysis and that recently offered by

Itskhoki & Mukhin (2023). In contrast to our global and nonlinear approach to the optimal

policy problem, their analytical framework relies on a novel, first-order approximation to

the equilibrium system. The latter brings substantial gains in terms of tractability, but

it effectively assumes away the liquidity-absorbing motive, only allowing for the liquidity-

injecting deviation from first-best. As a consequence, if the central bank is unconstrained

in period t, but risks running out of FX reserves in subsequent periods, their model implies

intervening more than one-for-one to a capital outflow, resulting in a negative UIP risk

premium.9

The liquidity-absorbing intervention motive captured by our analysis works in the opposite

direction and has a precautionary flavor. It relies on the negative impact of conditional

exchange rate volatility on FX market depth. Specifically, any given portfolio outflow shock

has less of an effect on the risk sharing wedge in the constrained period t+1 if FX markets are

deeper, which happens when the conditional exchange rate volatility σ2
t+1 is lower. Crucially,

as discussed above, entering the constrained period with larger net foreign assets reduces

conditional exchange rate volatility, which – in contrast to households – the central bank

internalizes. By accumulating reserves in period t beyond what the first-best suggests, the

9See Theorem 2 in Itskhoki & Mukhin (2023).
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central bank forces the whole economy to save more. This, in turn, makes it less likely that a

given portfolio capital outflow in period t+1 will lead to the depletion of FX reserves, which

decreases the loading of non-fundamental forces on exchange rate risk. In general, a liquidity-

absorbing intervention B∗
M,t > B∗

t − B∗
P,t can be interpreted as “keeping powder dry”, as it

results in the precautionary accumulation of FX reserves. Accordingly, by engaging in such

interventions, the central bank can smooth the international risk-sharing wedge over time

by compressing the UIP premium in the potentially constrained period t+ 1, at the cost of

increasing it contemporaneously in the unconstrained period t.

Conditions under which the liquidity-absorbing motive dominates the liquidity-injecting mo-

tive are characterized in the following proposition.

Proposition 2. Suppose the use of FXI is unconstrained in period t (λt = 0) but the LBR

is possibly binding in period t+1 (Et [λt+1] > 0). Then the optimal level of reserves is higher

relative to first-best if and only if

R∗Et [Θt+2] <
2

3
−

Covt
Ä
λt+1

Ä
−u11,t+1

u1,t+1

ä
, R∗Et+1 [Θt+2]

ä
Et

î
λt+1

Ä
−u11,t+1

u1,t+1

äó , (13)

which is more likely to hold if the (expected) stochastic discount factor between the potentially

constrained period t+ 1 and period t+ 2 is lower.

According to Proposition 2, the liquidity-absorbing motive prevails if the stochastic discount

factor is expected to drop sufficiently in the possibly constrained period t+1. In other words,

if households are expected to experience a particularly severe drop in tradable consumption

when the economy hits the implicit borrowing limit (the LBR becomes binding), then it

is optimal for the central bank to hold more reserves than in the first-best (i.e., to absorb

liquidity). By doing so, policymakers can make the potential crisis less severe if it unfolds.

The natural question is what type of potential crisis would justify holding more reserves than

in the first-best as a form of precaution. First, equation (12) indicates that higher portfolio

outflows B∗
P,t+1 strengthen the incentive to accumulate reserves at time t. Larger outflows

in period t+ 1 raise the UIP premium, tightening external financing conditions and forcing

households to reduce consumption. This effect is amplified when the economy already carries

a substantial debt burden.

This leads to the second point: the NFA position in period t + 1 can be written as B∗
t+1 =

R∗B∗
t + TBt+1, where TBt+1 = YT,t+1 − Ct+1 denotes the trade balance. A stronger NFA

position in period t lowers the likelihood of a sharp decline in consumption in period t+1, and

18



thus reduces the need to hold precautionary reserves in period t. Finally, a lower tradable

endowment YT,t+1 reduces the trade balance TBt+1, reinforcing the case for holding more

reserves at time t. The relevance and interaction of these channels are best analyzed in a

quantitative setting, which is the focus of the next section.

4 Quantitative Analysis

We begin by describing the calibration of the model presented above and then analyze its

quantitative implications, using remarks to highlight the key insights.

4.1 Calibration

We calibrate the model to Malaysia, a small open emerging economy with a central bank

that is an active user of FXI. We think Malaysia is a fitting case to explore through the

lens of our model since its central bank uses FXI continuously to stabilize the exchange

rate, especially in periods of large and volatile capital flows (Aziz, 2019). More specifically,

we calibrate the model to data spanning 2010 to 2023, when the Malaysian ringgit operated

under a managed float regime and Bank Negara Malaysia (BNM) conducted FX interventions

whenever “ringgit market movements were not orderly and to ensure enough liquidity in the

banking system” (BNM, 2025). While this period was admittedly characterized by relatively

stable economic conditions and no major domestic financial crisis, intervention estimates

suggest that the central bank was active in FX markets in both directions.10

Table 1: Calibration

Description Value Source/Target

World interest rate, quarterly R∗ = 1.01 Standard value DSGE-SOE
Relative risk aversion σ = 2 Standard value DSGE-SOE
Elasticity of substitution of T-NT goods ξ = 0.83 Bianchi (2011)
Weight on traded goods in CES aggregator α = 0.39 Malaysia’s economy
Subjective discount factor, quarterly β = 0.9871 NFA-GDP ratio, Malaysia’s economy
Financiers’ risk aversion ω = 28 FX market depth, Davis et al. (2023)

The parameter values of the model are listed in Table 1. We calibrate the model at a quarterly

frequency. The annualized world interest rate is 4% and the relative risk aversion σ is set

10Based on estimates from Adler et al. (2025), the standard deviation of quarterly spot FX interventions
by the BNM between 2010 and 2023 amounted to 1.5% of annual GDP. The frequencies of interventions in
both directions were similar, with 27 quarters of net purchases and 29 quarters of net sales.
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to 2, both standard in the small open economy literature. Regarding the parameter guiding

the elasticity of substitution between tradable and nontradable goods ξ, we follow Bianchi

(2011) and choose a value of 0.83 that is at the upper bound of the empirical estimates. We

calibrate the weight on traded goods in the CES aggregator α equal to the average share of

the tradable component in Malaysian GDP, which is 39%. Since Malaysia is a frequent user

of FXI, we need to take its FXI regime into account when calibrating β and ω.11 Our chosen

value of the subjective discount factor β targets the Malaysian private NFA-to-GDP ratio,

while the financiers’ risk aversion ω is set to imply an average FX market depth ωσ2 = 0.05,

consistent with Davis et al. (2023). While Appendix B provides additional details on this

part of the calibration, we note that our chosen values of β and ω imply a reasonable reaction

of the exchange rate to capital flows, including FX interventions.12

For the endowment part of the exogenous driving forces in our model {YT,t, YN,t}, we follow

the standard methodology in the literature and use the cyclical components of tradable and

nontradable GDP at constant prices, retrieved from BNM statistics. We classify agriculture,

mining and quarrying, and manufacturing as tradables and we treat the rest of GDP as

nontradable. To obtain the cyclical components, we remove a cubic trend and seasonality

from the natural logarithm of tradables and nontradables, in line with Schmitt-Grohé &

Uribe (2016).

To estimate a process for exogenous portfolio outflows {B∗
P,t}, we first calculate an empirical

measure of the risk sharing wedge (or ex-ante UIP deviation) as defined in our model, i.e.,’RSW t = Θ̂t+1

(
R̂∗

t − R̂t
Êt◊�Et [Et+1]

)
, (14)

where R̂∗
t is the effective federal funds rate, R̂t denotes the BNM overnight policy rate, Êt is

the USD to Malaysian Ringgit (MYR) spot rate, and ◊�Et [Et+1] is the Bloomberg composite

one-quarter ahead forecast of the USD/MYR exchange rate. Furthermore, our measure of

the stochastic discount factor is given by Θ̂t+1 = β
Ä
Ĉt+1/Ĉt

ä 1−σξ
ξ
Ä
ĈT,t+1/ĈT,t

ä− 1
ξ where we

compute Ĉt and ĈT,t using the cyclical components of tradable and nontradable GDP (see

above) as well as the quarterly trade surplus retrieved from the IMF IFS.13 Next, we make

11Given our calibration strategy, both β and ω crucially depend on the FXI regime because a higher level
of reserves increases the model net foreign asset position, while an FXI regime that dampens real exchange
rate volatility is associated with deeper FX markets.

12More specifically, if we simulate the data from our baseline model and regress the log change in the
exchange rate on portfolio outflows (net of FXI and expressed as a percentage of annual GDP), controlling
for endowment shocks, we obtain a coefficient of around 0.6. This number increases to 1.3 if we use data
from the decentralized equilibrium (without FXI) but drops to 0.4 under optimal time-consistent policy.

13Note that the SDF “Θt+1 in (14) is computed using realized consumption in period t + 1, whereas the
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use of the international risk-sharing condition to back out exogenous portfolio outflows

B̂∗
P,t = B̂∗

t − B̂∗
M,t −

’RSW t

ωσ̂2
t

, (15)

where we obtain the quarterly measure of Malaysia’s NFA position B̂∗
t from the IMF IFS,

the quarterly proxy for Malaysia’s FXI from Adler et al. (2025), and where we use the

three-month implied USD/MYR volatility from Bloomberg to retrieve σ̂2
t .

14

We additionally model exogenous states as a first-order vector autoregression st = ρst−1+εt,

where st =
[
log YT,t, log YN,t, sinh

−1
(
BP,t −BP

)]′
are obtained as described above for the

period 2010:Q1 to 2023:Q4.15 The error term εt = [εT,t, εN,t, εP,t]
′ follows a trivariate normal

distribution with zero mean and contemporaneous variance-covariance matrix V, while ρ is

a 3× 3 matrix comprising first-order autocorrelation terms:

V =

0.0005447 0.0005911 0.0019075

0.0005911 0.0008851 0.0013138

0.0019075 0.0013138 0.1727534

 , ρ =

0.8213977 −0.3171368 −0.0201376

0.2110661 0.3794069 −0.0260989

−0.650205 −0.1477713 0.4799129

 .
Without loss of generality, we normalize the mean of the endowment processes to one, while

the mean of portfolio outflows equals B̄P = −3.09, indicating that Malaysia experiences

portfolio inflows on average. Furthermore, the unconditional standard deviations of the

exogenous driving forces are σYT
= 0.029, σYN

= 0.037 and σB∗
P
= 0.521. The tradable and

nontradable endowment processes are highly positively correlated (σYT ,YN
= 0.795) while

portfolio outflows are weakly negatively correlated with endowments (σB∗
P ,YT

= −0.036 and

σB∗
P ,YN

= −0.147). This weak correlation between portfolio outflows and the endowment

process is a manifestation of the well-documented exchange rate disconnect, i.e., the fact

that exchange rates are to a large extent driven by factors other than fundamentals.

The exogenous state variables S are discretized into a first-order Markov process with four

grid points for both of the endowment processes {YT , YN}, eight grid points for the portfolio

flow process B∗
P , and with 1000 grid points for the endogenous state variable B∗.16 Finally,

SDF in (3) is expressed in terms of expected consumption for that period. We adopt this simplification
because data on expected (tradable) consumption is unavailable.

14Since Adler et al. (2025) only provide FX interventions data, we additionally use IMF IFS data to
account for the level of FX reserves needed to compute B̂∗

M,t.
15Note that we remove the mean BP from the portfolio flow process and apply the inverse hyperbolic sine

transformation due to negative values.
16Specifically, the grid points are: YT ∈ {0.96, 0.99, 1.01, 1.04}, YN ∈ {0.95, 0.98, 1.02, 1.06}, and B∗

P ∈
{−3.81,−3.58,−3.38,−3.18,−2.99,−2.79,−2.59,−2.36}.
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we solve the decentralized equilibrium and the constrained planner’s problem using time

iteration on the Euler equation.

4.2 Policy Functions

Figure 1 shows the policy functions for the small open economy’s NFA position B∗, separately

for the decentralized equilibrium without FXI (blue solid line) and the constrained planner’s

solution (i.e., optimal FXI; red dashed line). For low levels of the current net foreign asset

position, the economy increases its NFA next period, while the opposite is true for relatively

high current net foreign asset holdings. As a result, both lines intersect the 45 degree line

indicating the existence of stationary equilibria. Intuitively, the financiers’ risk aversion

gives rise to an upward-sloping supply of funds to the domestic economy, which limits the

amount of external borrowing. In addition, Figure 1 reveals that the constrained planner’s

policy function lies above that characterizing the decentralized equilibrium, highlighting the

importance of FX interventions for the economy’s steady state NFA position.

To further shed light on the characteristics of the optimal FXI policy, Figure 2 shows the

optimal level of FX reserves, B∗
M , as a function of portfolio outflows, B∗

P , distinguishing

between states with a relatively low (solid blue) and high (dashed red) NFA position and an

average across all NFA states (green dotted). To put these in perspective, the corresponding

first-best policies are indicated by the black solid lines. For a relatively high NFA position,

optimal policy offsets portfolio outflows approximately one-for-one and deviations from the

first-best policy are minor. This is because a relatively high NFA position is associated with

ample FX reserves, which decreases the relevance of the lower bound. In contrast, the lower

bound on reserves becomes relevant if the economy finds itself in a state with relatively low

NFA, in which case the central bank optimally exhausts its reserves in response to sufficiently

large portfolio outflows. While optimal reserve holdings may exceed or fall short of the first-

best level depending on the state, precautionary considerations dominate on average. This is

illustrated by the positive gap between the green dotted line and the corresponding first-best

policy across portfolio outflow levels. It is important to emphasize that the flatter section of

the average policy function does not simply reflect reserve depletion in some states. Rather,

it is driven by the precautionary motive.17 This leads to our first remark, which connects

back to the qualitative analysis in Section 3.

Remark 1. Under the optimal time-consistent policy, reserve holdings may lie above or below

17This is confirmed by excluding states with zero reserves from the average, which turns out to have a
relatively minor impact on the shape of the policy function.
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Figure 1: Policy function for net foreign assets B∗

Notes: The figure shows the policy function for bond holdings of the competitive equilibrium without
FXI (blue solid line) and the constrained planner’s solution (red dashed line) for the exogenous state
{YT , YN , B∗

P } = {1.01, 1.02,−2.6}.
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Figure 2: Policy function for FX reserves

Notes: The figure illustrates the policy functions for FX reserves of the constrained planner’s solution
conditional on relatively low current NFA (blue solid line) and relatively high NFA (red dashed line) as well
as an average (green dotted line). The black solid lines depict the corresponding policy functions under the
first-best. Low NFA is defined as the state {YT , YN , B∗} = {1.01, 1.02,−3.18} and high NFA is defined as
{YT , YN , B∗} = {1.01, 1.02, 0.16}. In terms of annual GDP, low and high NFA are -32% and 2%, respectively.
The average is computed over all NFA positions B∗, conditional on {YT , YN} = {1.01, 1.02}.
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the first-best benchmark, depending on the state. However, the average policy is shaped by

a precautionary motive: conditional on the NFA position, the extent to which FXI offsets

contemporaneous portfolio outflows declines with the size of the outflow shock.

4.3 Ergodic Implications

We next compare the ergodic distributions of key macroeconomic variables in an econ-

omy without FXI, to those corresponding to optimal, time-consistent FX interventions. To

this end, we first generate a long sequence (2,000,000 periods) of the exogenous variables

{YT,t, YN,t, B
∗
P,t}2×106

t=1 based on the estimated Markov process described in Section 4.1. Using

this exogenous sequence and the policy functions, we then compute equilibrium variables for

the economy without FXI and with optimally conducted FXI.

Figure 3: Ergodic distribution of net foreign assets and FX reserves

Notes: The figure shows the densities for the net foreign asset positions and FX reserves obtained by
simulating the model for 2× 106 quarters.

Figure 3 shows the unconditional distributions of the net foreign asset position under these
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two alternative policies, as well as of FX reserves under the optimal FXI policy. Strikingly,

the optimal use of FXI significantly affects the steady state of the economy: savings are

higher on average, resulting in a higher net foreign asset position. This occurs because

active use of FXI implies a positive average level of FX reserves, which means that the

demand for foreign currency increases. To accommodate it, bond market equilibrium (4)

requires either lower borrowing by households (higher NFA B∗
t ) or increased intermediation

by financiers (higher −B∗
F,t). In our model, both occur in parallel. In particular, net foreign

assets increase markedly, but not one-for-one with FX reserve holdings, indicating that FX

market conditions also improve, allowing financiers to expand their balance sheets.

Figure 4: FX market conditions

Notes: The plot shows the densities for the FX market depth (left panel) and the real exchange rate
(right panel) obtained from a simulation based on 2 × 106 quarters. The real exchange rate is defined as

Qt =
[
αξ + (1− α)ξ

Ä
1
Et

ä1−ξ
]− 1

1−ξ

.

The drivers of the improvement in FX market conditions are illustrated in Figure 4, which

shows the unconditional distribution of FX market depth ωσ2
t (left panel), alongside the

real exchange rate (right panel) for the two FXI regimes considered. Optimal FXI policy

has a clearly stabilizing effect on the exchange rate. In essence, by counteracting portfolio

flows, the central bank reduces the non-fundamental and inefficient part of exchange rate

dynamics. However, the planner does allow for efficient exchange rate fluctuations in response

to endowment shocks, which explains why there is still sizable exchange rate variability even

under optimal policy. The left panel shows that the reduction in exchange rate risk ends up
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significantly deepening the FX market. We can summarize these observations as follows:

Remark 2. Compared to a no-FXI equilibrium, the stochastic steady state under the optimal

time-consistent FXI policy is characterized by:

(a) a precautionary level of FX reserves and thus a higher net foreign asset position,

(b) deeper FX markets as the central bank acts as an FX liquidity provider.

4.4 Dynamics

We now analyze the model’s dynamics, focusing on how portfolio flows affect the economy,

and how their impact depends on whether foreign exchange interventions are deployed or

not. To characterize an episode of portfolio capital outflows (inflows), we use the stochastic

simulations described above, gathering all non-overlapping, 17-period samples, in which the

peak outflow (inflow) occurs in the middle period, and averaging relevant macroeconomic

variables over all the extracted subsamples.

Figure 5 depicts a typical portfolio outflow episode, with the top left panel showing that, at

its peak (corresponding to t = 0), the outflow amounts to about 8% of steady-state GDP. In

the absence of FX interventions (solid blue lines), a fall in the demand for domestic currency

tightens external financial conditions and weakens the exchange rate. A higher UIP pre-

mium discourages borrowing from abroad, resulting in a sharp contraction of consumption.

Moreover, portfolio outflows make FX markets shallower as illustrated by the bottom left

panel of Figure 5. To understand the intuition, recall that market depth is inversely related

to the risk borne by financiers, which is captured by the conditional exchange rate volatility

σ2
t . Holding their foreign currency borrowing fixed, a depreciation of the domestic currency

scales up the (expected) payoff on their domestic currency position. This proportional in-

crease magnifies both the mean and the variance of percentage returns — just as leverage

would — thereby raising the required compensation for bearing risk.18

If the central bank follows optimal time-consistent FXI policy (dashed red lines), the reaction

of FX reserves is almost the mirror image of portfolio outflows, although the offset is not full.

More specifically, at the peak of portfolio outflows, in period t = 0, the central bank’s reserves

are down by around 5% of GDP, indicating that policymakers choose not to run reserves

down completely. Nevertheless, this policy helps stabilize the economy since it significantly

reduces the exchange rate depreciation and mitigates the deterioration in external financing

conditions. As a result, the fall in consumption is also greatly reduced. Besides stabilizing

18This point is closely related to Proposition 1(a).
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Figure 5: Portfolio outflow episode

Notes: The figure depicts the average paths of selected variables during an episode of portfolio outflows.
One period corresponds to one quarter, and period 0 coincides with the peak outflow.
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the exchange rate, the optimal FXI policy largely eliminates a spike in FX market depth.

While this mainly reflects the fact that the intervention makes the currency stronger, it is

also partially due to “keeping powder dry”. Such policy conduct means that the monetary

authority is better prepared to offset a possible future capital outflow, thus reducing the

non-fundamental component of exchange rate risk.

Figure 6: Optimal response to small and large portfolio outflows

Notes: The figure depicts the average paths of selected variables during episodes of small and large portfolio
outflows. One period corresponds to one quarter and period 0 coincides with the peak outflow.

The extent to which optimal FXI policy offsets contemporaneous portfolio outflows depends

on the size of (expected) portfolio outflows. While this offset is partial in Figure 5, it can

also be more aggressive. We illustrate this point in Figure 6, where we distinguish between

episodes of relatively small (blue solid lines) and large (red dashed lines) portfolio outflows.

While the episodes of strong portfolio outflows are around four percentage points of GDP

larger, the optimal FX intervention is similar, implying a considerably bigger offset. This

asymmetry is also reflected in the amount of funds intermediated by financiers B∗
F,t. For

strong portfolio outflows, which are only partially absorbed by the central bank’s interven-

tion, financiers increase their long exposure to domestic currency. This effect on their balance

sheets almost vanishes in the case of small portfolio outflows. Because the central bank’s

FX sales nearly fully offset the portfolio outflows, the net demand for domestic currency is

essentially unchanged. Notably, the documented asymmetry in the policy response does not

simply reflect episodes in which the central bank runs out of reserves during periods of strong
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portfolio outflows. In fact, the pattern remains essentially unchanged when these episodes

are excluded, highlighting the importance of the “keeping powder dry” motive.

While the previous figures were concerned with portfolio outflows, Figure 7 depicts the

average model responses during portfolio inflow episodes. We see that the central bank offsets

contemporaneous portfolio inflows almost one-for-one, thus following the first-best policy

more closely. The underlying reason for that being the smaller relevance of the lower bound

on reserves during inflow episodes, with the policy response mirroring the unconstrained

case. In other words, optimal policy effectively stabilizes the economy during inflow episodes

and mutes real exchange rate volatility.

Notably, and in contrast to portfolio outflows, inflows deepen FX markets. A corollary

of this observation is that FX interventions are relatively more effective during episodes of

portfolio outflows, as FX markets are generally shallower then. In other words, a central bank

that follows the optimal FXI policy gets more bang for the buck while selling reserves than

when purchasing them. The importance of these differences can be quantified by comparing

Figures 5 and 7. There the central bank conducts FX sales (purchases) worth 4.8% (6.6%)

of GDP between periods t = −8 and t = 0. However, the real exchange rate at the peak

of outflows in period t = 0 is 3.5% more appreciated under optimal FXI compared to the

decentralized equilibrium, while it is around 3.4% weaker in the case of inflows. Accordingly,

in our simulations, FX sales have a 44% bigger impact on the real exchange rate than FX

purchases, which we summarize in the following remark.

Remark 3. Under the optimal time-consistent FXI policy, FX sales are more effective than

FX purchases as they are implemented when FX markets are relatively shallower.

Finally, we investigate the extent to which FX interventions should be used to respond to

fundamental shocks, represented in our model by stochastic endowments. Figure 8 shows an

average episode of endowment decreases. Starting with the case of no FXI (solid blue lines),

the economy experiences a sharp contraction in consumption, which is only partially cush-

ioned by increased borrowing from abroad. The real exchange rate appreciates because the

fall in nontradable endowment (and thus nontradable consumption) dominates the decrease

in tradable consumption.19 Since the exogenous processes for endowments and portfolio out-

flows are slightly negatively correlated (see Section 4.1), portfolio capital flees the country.

If FXI is conducted optimally, it is focused on stabilizing the international risk-sharing wedge,

which would otherwise reflect fluctuations in portfolio capital and the country’s net foreign

19Figure C.1 in the Appendix summarizes episodes in which the tradable endowment falls while the
nontradable endowment increases, in which case the real exchange rate depreciates.
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Figure 7: Portfolio inflow episode

Notes: The figure depicts the average paths of selected variables during an episode of portfolio inflows. One
period corresponds to one quarter and period 0 coincides with the peak inflow.
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Figure 8: Episodes of negative endowment shocks

Notes: The figure depicts the average paths of selected variables during episodes of negative endowment
shocks. One period corresponds to one quarter and period 0 coincides with the peak of the negative endow-
ment shock.
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asset position. However, the policy is not effective in limiting the fall in consumption that

is driven by fundamental forces. Its effect on the exchange rate adjustment is also small as

the latter facilitates efficient expenditure switching. We summarize these observations in the

following remark.

Remark 4. In response to fundamental shocks, the optimal time-consistent FXI policy focuses

on stabilizing the international risk-sharing wedge, otherwise allowing the exchange rate to

float freely.

5 Welfare Implications

So far, we have seen how optimal FXI can efficiently stabilize the economy by reducing

excessive exchange rate volatility arising from cross-border portfolio flows. In this section,

we compute the welfare implications of this policy and compare them to those of alternative

policy regimes.

As is standard in the literature, we express welfare gains in consumption equivalence units.

Formally, let κ be the additional fraction of consumption that households in the benchmark

economy b would have to receive to make them indifferent to living in an economy with

alternative policy p. Given our assumptions on the utility functional, κp can be computed

as

κp =

Ñ
Ṽp
Ä
B

∗ä
Ṽb
Ä
B

∗äé 1
1−σ

− 1, (16)

where Ṽi denotes the household lifetime utility under policy regime i ∈ {b, p}, conditional on
initial bond holdings that coincide with their steady state value in the benchmark economy

B
∗
, and averaged over the stationary distribution of the exogenous state process (more details

can be found in Appendix C). Since the measure conditions on the benchmark economy’s

steady state, the welfare gain κp takes into account transitional dynamics, i.e., it is not

simply based on an unconditional comparison of welfare in the two steady states.

We chose the version of the model calibrated to Malaysia – which accounts for BNM’s

observed FX interventions – as our benchmark. We compare it to several alternative FXI

policy regimes. These include the optimal time-consistent FXI policy, as described in Section

3, as well as two alternatives in which the central bank commits to simple FXI rules, which

respect the lower bound on reserves. The reason for considering simple rules is that the

optimal intervention formula (12) is very complicated and includes expectations, which may
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make it difficult to implement.20 Finally, to provide an upper bound on welfare gains,

including those achievable under commitment, we also consider the first-best policy.21 As

regards the simple rules, the first one is inspired by the first-best policy, with the crucial

distinction that the central bank is subject to the LBR

B∗
M,t = max

(
B∗

t −B∗
P,t, 0

)
. (17)

Note that this policy, which we will refer to as the UIP premium rule, eliminates the inter-

national risk-sharing wedge whenever feasible. The second simple rule, which we refer to as

the portfolio flow rule, offsets only the exogenous component of portfolio flows

B∗
M,t = max

(
−B∗

P,t, 0
)
. (18)

These two FXI rules are interesting for several reasons. First, as outlined in Section 3, the

optimal time-consistent policy resembles the UIP rule, but deviates from it by accounting

for the possibility that the LBR might bind in the future. A quantitative comparison of

these two policy regimes helps us evaluate the significance of these forward-looking consid-

erations. Second, comparing the UIP rule to the portfolio flow rule allows us to assess the

welfare implications of stabilizing two components of the international risk-sharing wedge:

the endogenous one associated with the net foreign asset position B∗
t , and the exogenous one

represented by the portfolio capital position B∗
P,t.

Table 2 reports the welfare gains for the four policy regimes described above. Moving to

the optimal time-consistent FXI policy improves welfare by 0.25% of consumption. This

comes quite close to the maximum achievable gain of 0.29% represented by the first-best.

The rule-based policy regimes also enhance welfare, albeit to a lesser extent, with the UIP

and portfolio flow rules yielding welfare gains of 0.15% and 0.05%, respectively. Overall, the

optimal use of FXI significantly outperforms both of the considered rules, and is only slightly

worse than the first-best. This highlights the quantitative importance of the forward-looking

element in the optimal time-consistent FXI policy, and it suggests that the scope for further

gains achievable through commitment is limited. However, and as we shall explain, the latter

20That feature of the optimal time-consistent FXI policy in our model is shared with the optimal tax
on debt formula that decentralizes the planner’s allocation in models with collateral constraints, see, e.g.,
Bianchi & Mendoza (2018).

21To solve for the first-best policy, we posit that FX interventions are characterized by equation (9), which
effectively assumes away the LBR. The associated equilibrium is stationary since households are impatient
(βR∗ < 1) and there is a lower bound on the net foreign asset position, which jointly guarantee that the
transversality condition is satisfied. More details on the recursive representation of the first-best are provided
in Appendix C.
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part of this conclusion crucially depends on the initial level of FX reserves.

Table 2: Welfare Implications of Alternative FXI Policies

Portfolio UIP Premium Time-Consistent First
Rule Rule Optimal FXI Best

Welfare Gain 0.045 0.150 0.248 0.288

Notes: The welfare gain is computed according to formula (16) and expressed in
percentages. The UIP and portfolio flow rules are defined by equations (17) and
(18), respectively.

To clarify the differences between the alternative FXI policies, it is useful to examine their

ergodic implications. Table 3 presents a selection of first and second moments obtained from

long stochastic simulations.22 One point worth emphasizing is that the average stock of FX

reserves varies significantly across the different policy regimes. This further translates into

differences in the net foreign asset position, since FX reserves, by increasing the net demand

for foreign currency, partially crowd out borrowing by domestic households.

We have already shown, in Section 4.3, that optimal time-consistent FXI policy results in

moderately positive levels of FX reserves. Due to the precautionary motive, their average

level is higher than under the closely related UIP rule, but the difference is relatively small.

However, this small difference, coupled with intervention patterns designed to “keep the

powder dry”, is enough to drastically reduce the frequency of episodes in which FX reserves

are depleted. FX markets are also deeper and the volatility of the risk-sharing wedge is

substantially reduced if FXI is conducted optimally rather than according to the UIP rule.

Table 3: Unconditional Moments under Alternative FXI Regimes

No FXI Optimal FXI UIP Rule Portfolio Rule First Best
Variable Name Mean Std Mean Std Mean Std Mean Std Mean Std

Consumption 0.988 0.025 0.990 0.020 0.990 0.019 1.000 0.022 0.987 0.023
Net Foreign Assets -0.307 0.008 -0.266 0.011 -0.271 0.017 -0.006 0.008 -0.337 0.007
FX Reserves 0.000 0.000 0.046 0.038 0.041 0.038 0.301 0.043 -0.029 0.044
Real Exchange Rate 0.399 0.014 0.398 0.012 0.398 0.013 0.390 0.011 0.400 0.011
FX Market Depth 0.083 0.013 0.054 0.008 0.058 0.009 0.047 0.008 0.042 0.010
UIP Premium 0.007 0.127 0.012 0.028 0.012 0.032 0.012 0.012 0.000 0.000

Reserve Depletion Freq. – 0.020 0.168 0.000 –

Notes: The moments are obtained by simulating each FXI regime over 2 × 106 quarters. NFA and FX
reserves are expressed as a fraction of annual GDP. The risk sharing wedge is annualized.

22Figure C.2 in Appendix C compares how the economy behaves under the different policy regimes during
portfolio outflow episodes.
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If the FXI rule only responds to the portfolio component of the UIP premium, FX reserves

are very high. This simply reflects the fact that, according to our calibration, there is positive

appetite for domestic currency on average (B∗
P,t is typically negative), while the economy’s

net foreign assets position (i.e., the part of the UIP premium that the rule ignores) is negative,

as domestic households are relatively impatient (βR∗ < 1). The high level of reserves implies

that the risk of depleting them is virtually nil. As a consequence, exchange rate volatility

is much lower and FX markets are deeper compared to the optimal policy. This ultimately

translates into smaller fluctuations in the international risk sharing wedge, even though the

rule does not respond to its endogenous component associated with the NFA. However, these

stabilization gains come at the cost of low international borrowing (the steady state NFA

position is nearly balanced), which is the main reason why this policy is associated with

relatively modest welfare gains.

In the first-best, the central bank does not need to accumulate precautionary FX reserves

since its use of FXI is unconstrained. In fact, it typically borrows from abroad in order

to accommodate the borrowing needs of domestic households, so that the country’s NFA

position is lower than in the other FXI regimes. Notably, the first-best policy perfectly

eliminates the risk-sharing wedge, but it does not stabilize the exchange rate much beyond

what the portfolio rule achieves, ultimately reflecting the expenditure switching motive in

response to fundamental shocks. As a consequence, FX markets are deeper than under any

of the other policies considered, but not perfectly deep.

One complication in interpreting the welfare gains reported in Table 2 is that the various

policy regimes imply different steady states. Recall that the initial NFA position used to

compute welfare gains, as defined in (16), corresponds to the observed economy. Malaysia’s

average stock of FX reserves equal to 30% of annual GDP translates into an NFA position

of about 2% of annual GDP. In the context of our model, this level of reserves is excessive

and the resulting international debt too small. Consequently, a gradual decumulation of

reserves during the transition period contributes positively to the welfare gains reported in

Table 2. Figure 9 illustrates this point by comparing the value functions under different

policy regimes as a function of the initial NFA position. Clearly, starting from lower level of

assets means that the optimal time-consistent FXI policy deviates more from the first-best

and the degree to which it overperforms the UIP premium rule shrinks, turning into a small

disadvantage for a sufficiently high level of initial debt.

To isolate the welfare effects beyond those arising from transitional reserve decumulation,

we conduct a comparison where the considered policy regimes share a common steady-state

NFA position. Specifically, we redefine the benchmark economy to be the optimal time-
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Figure 9: Value Functions of Alternative FXI Policies

Notes: The figure depicts value functions Ṽi of alternative policy regimes. The vertical dashed line corre-
sponds to the net foreign asset position (or bond holdings) in the stochastic steady state of the calibrated
economy. The stars indicate the net foreign asset positions in the stochastic steady state of the respective
alternative FXI policies.
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consistent policy and adjust the stock of FX reserves in each alternative policy regime to

match the steady-state NFA position under this benchmark. Accordingly, the UIP premium

rule defined in (17) is modified as follows

B∗
M,t = max (γUIP +B∗

t −BP,t∗ , 0) , (19)

where γUIP is a constant term that achieves the desired average NFA level. We also consider

a policy aimed at smoothing the real exchange rate, which we will refer to as the RER rule.

This rule may seem appealing to policymakers as it relies on readily observable variables and

we define it as

B∗
M,t = max

Ç
γRER − ϕ

Ç
Qt −Q

Q

å
, 0

å
, (20)

where ϕ ≥ 0 controls how aggressively the central bank leans against the fluctuations in the

real exchange rate, the steady state level of which is denoted by Q. We calibrate ϕ such

that it maximizes welfare and, as before, γRER is set to ensure that the steady-state NFA

matches that under the optimal time-consistent policy. Finally, we consider a “no FXI”

regime, which corresponds to a special case of the rule above where ϕ = 0.

Table 4: Welfare Costs of FXI Rules relative to optimal time-consistent policy

No FXI RER Rule UIP Rule

Welfare Cost 0.029 0.011 -0.003

Notes: The welfare cost is expressed in percentages and computed as −κp in
formula (16), where the benchmark economy b is the optimal time-consistent
policy. All considered FXI rules have identical NFA positions in the steady state
as described in the text.

Table 4 presents the welfare costs of the three considered FXI rules relative to the optimal

time-consistent policy. Notably, now that the steady-state NFA positions are identical across

all policies, the welfare differences are substantially smaller than those reported in Table 2.

This underscores the significant role played by the average level of FX reserves in shaping

the welfare outcomes. The optimal time-consistent policy still improves welfare compared

to a regime in which FX reserves are kept constant, but the gain expressed in consumption

equivalence units is approximately 3 basis points. Relative to the (optimized) RER rule, the

gain is about three times smaller but still positive, reflecting the importance of distinguishing

between inefficient volatility of the exchange rate caused by portfolio flow shocks and its

efficient adjustment to endowment shocks.

Interestingly, despite being purely static and hence missing forward-looking motives of the
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FXI conduct, the UIP rule yields welfare that is very similar to that under the optimal

time-consistent policy, even outperforming it by a small margin. This outcome reflects the

importance of time inconsistency in the model. As explained in Section 3, the optimal time-

consistent policy does not coincide with the optimal policy under commitment, which would

entail a ”forward guidance” mechanism, nor is it guaranteed to outperform some simple

rules. While the value of commitment is small when the economy is far away from the LBR,

it becomes sufficiently big for the simple UIP rule to prevail over the optimal time-consistent

policy when the average level of FX reserves is only around 5% of GDP, as assumed in the

comparison presented in Table 4.

The following remark concludes our analysis of the welfare implications of alternative FXI

regimes.

Remark 5. If the initial stock of FX reserves is high, adopting the optimal time-consistent

FXI policy delivers robust welfare gains over simple rule-based alternatives, with performance

close to the first-best. However, if FX reserves are initially small, the optimal time-consistent

policy achieves welfare that is very similar to a simple rule targeting ex-ante UIP deviations.

6 Conclusions

This paper analyzes the optimal use of foreign exchange interventions in a small open econ-

omy with endogenous FX market depth and a lower bound on FX reserves. We find that

optimal time-consistent FXI can effectively reduce exchange rate volatility caused by port-

folio flow shocks, thereby shrinking deviations from uncovered interest parity and improving

FX market depth. The optimal policy response hinges on the expected path of portfolio

flows and the existing net foreign asset position. When the economy has a relatively strong

NFA position and/or outflows are moderate and expected to ease, it can be optimal to hold

FX reserves below their first-best level. In contrast, when outflows are larger and likely

to persist, and the NFA position is weak, the precautionary motive dominates, making it

optimal to maintain higher reserve buffers.

Our quantitative analysis further reveals that under optimal policy, the effectiveness of FXI

is state-dependent. Specifically, FX purchases tend to have a lower impact on the exchange

rate as they occur during periods of capital inflows, when FX markets are deeper, while FX

sales are relatively more effective as they take place amid portfolio outflows, when markets

tend to be shallower. We also find that the optimal time-consistent FXI policy is associated

with substantial welfare gains, at least if the economy starts out with a sufficiently high
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level of FX reserves. Committing to an FXI rule that aims to smooth UIP deviations also

improves welfare, albeit to a lesser extent. However, the value of commitment stemming from

the lower bound on reserves becomes more pronounced when reserves are relatively low. As

a result, the optimal time-consistent FXI policy may no longer outperform the simple UIP

rule in such circumstances.

Overall, our analysis provides a tractable quantitative framework to analyze the use of FXI.

It highlights the importance of a precautionary motive behind reserve accumulation, as well

as state dependency in the conduct of FXI policy. Future research could build on our results,

e.g., by incorporating additional financial and nominal rigidities or endogenizing the effective

lower bound on FX reserves, to see how such changes affect the optimal deployment of FXI.
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Appendix

A Proofs

Proof of Proposition 1 We first note that the resource constraint implies ∂B∗
t /∂B

∗
P,t =

−∂CT,t/∂B
∗
P,t. We now proceed by proving the two parts of the proposition. Starting with

point (a), the expression for the conditional exchange rate volatility can be rewritten as

σ2
t = R2

t vart

Å Et
Et+1

ã
=

Ñ
1

Et

î
Θt+1

Et
Et+1

óé2

vart

Å Et
Et+1

ã
=

(u1,t)
2Ä

Et

î
β u1,t+1

Et+1

óä2vart Å 1

Et+1

ã
,

where we have used the Euler equation in the second line. The partial derivative with respect

to consumption in period t is therefore given by

∂σ2
t

∂CT,t

= 2

Å
u11,t
u1,t

ã
(u1,t)

2Ä
Et

î
β u1,t+1

Et+1

óä2vart Å 1

Et+1

ã
= 2

Å
u11,t
u1,t

ã
σ2
t .

Taking the partial derivative with respect to B∗
P,t and using the previous equations we obtain

the result in question

∂σ2
t

∂B∗
P,t

=
∂σ2

t

∂CT,t

∂CT,t

∂B∗
P,t

= 2

<0︷ ︸︸ ︷Å
u11,t
u1,t

ã
σ2
t

<0︷ ︸︸ ︷Ç
− ∂B∗

t

∂B∗
P,t

å
> 0.

Turning to property (b), suppose by contradiction that ∂Et[Θt+1]
∂B∗

P,t
≥ 0, which would then imply

∂Et [Θt+1]

∂B∗
P,t

=
∂Et [Θt+1]
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∂B∗
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≥ 0
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≥ 0 ⇒ ∂B∗
t

∂B∗
P,t

≤ 0.

However, this would violate our assumption that
∂B∗

t

∂B∗
P,t

> 0, and thus it must be the case

that ∂Et[Θt+1]
∂B∗

P,t
< 0. ■

Derivation of ∂B∗
t /∂B

∗
P,t Taking the partial derivative of the IRS condition with respect
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to B∗
P,t yields

ω
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t

∂B∗
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(
B∗

t −B∗
P,t

)
+ ωσ2

t

Ç
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å
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.

Inserting the expressions for
∂σ2

t

∂B∗
P,t

and ∂Et[Θt+1]
∂B∗

P,t
from the proof of Proposition 1 we then

obtain

2ω

Å
u11,t
u1,t

ã
σ2
t

Ç
− ∂B∗

t

∂B∗
P,t

å (
B∗

t −B∗
P,t

)
+ ωσ2

t

Ç
∂B∗

t

∂B∗
P,t

− 1

å
= −R∗

Å
−u11,t
u1,t

ã
Et [Θt+1]

∂B∗
t

∂B∗
P,t

.

Further plugging in the IRS condition R∗Et [Θt+1] = 1+ωσ2
t

(
B∗

t −B∗
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)
on the RHS we get
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After rearranging, we have
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Finally, rewriting the equation as an expression for
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implies that the sufficient condition for
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> 0 is given by
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Proof of Theorem 1 The Lagrangian of the second-best can be written as

L = Et
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The first-order condition with respect to B∗
t yields (11) in the main text
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which yields the following partial derivative with respect to B∗
t

∂σ2
t+1

∂B∗
t

= 2R∗
Å
u11,t+1

u1,t+1

ã
σ2
t+1 < 0. (A.1)

Furthermore, the partial derivative of the stochastic discount factor Θt+2 with respect to B∗
t

is given by
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Next, inserting (A.1) and (A.2) into the first-order condition derived above, we obtain
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Rearranging and simplifying then implies
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Finally, plugging in the period t IRS condition R∗Et [Θt+1] = 1 + ωσ2
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which completes the proof. ■

Proof of Proposition 2 From Theorem 1, the optimal level of reserves is higher relative

to the first-best if and only if
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where we have made use of B∗
F,t = B∗
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P,t+1. Next, applying the IRS condition
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and using the law of iterated expectations
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which completes the proof. ■
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Derivation of the Absolute Risk Aversion The marginal utility with respect to trad-

ables is given by

u1,t = αC−σ
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Taking the derivative with respect to tradables yields
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which allows us to characterize the absolute risk aversion as
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1
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Derivation of the Price Index We start by rewriting the intratemporal optimality con-

dition as

CT,t =
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t .

Defining the price index Pt as the price of aggregate consumption good Ct allows us to then

write Å
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and similarly
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Next, plugging these expressions into the consumption aggregator we obtain

Ct =
[
α (CT,t)

ξ−1
ξ + (1− α) (CN,t)

ξ−1
ξ

] ξ
ξ−1

=
PtCt[Ä

α
1−α

äξ
E1−ξ
t + 1

] ñÅ α

1− α

ãξ

(1− α) E1−ξ
t + (1− α)

ô ξ
ξ−1

= PtCt

î
αξE1−ξ

t + (1− α)ξ
ó 1

ξ−1 ,

which implies that the price index is given by
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Derivation of the Real Exchange Rate Define the real exchange rate as

Qt =
EtP ∗

t

Pt

.

Using the expression for the domestic price index and the fact that the price level abroad is

normalized to unity, we obtain the following expression for the real exchange rate

Qt =

ñ
αξ + (1− α)ξ

Å
1

Et

ã1−ξ
ô− 1

1−ξ

.

B Calibration Details

Observed FXI regime While we do not know the exact FXI reaction function of the

BNM, we can account for their FXI policy in the model by treating the observed FX in-

terventions B̂M,t as an exogenous process similar to portfolio outflows B̂P,t. For this pur-

pose, we define a new variable that is the sum of portfolio outflows and FX interventions

B̂PM,t = B̂P,t + B̂M,t and replace BP,t by BPM,t as the third exogenous state variable. We

can make this simplification since it implies that the only difference between BP,t and BM,t

– namely that BP,t is exogenous while BM,t is a policy variable – then ceases to exist.

Given the changed exogenous state variables, we estimate an AR(1) process s̃t = ρ̃s̃t−1 + ε̃t

where st =
[
log YT,t, log YN,t, sinh

−1
(
BPM,t −BPM

)]′
and BPM = 0.24. The error term

ε̃t = [ε̃T,t, ε̃N,t, ε̃PM,t]
′ follows a trivariate normal distribution with zero mean and contempo-

raneous variance-covariance matrix Ṽ and ρ̃ is a 3×3 matrix consisting of the autocorrelation

terms

Ṽ =

0.0005258 0.0005685 −0.000789

0.0005685 0.0008582 −0.002274

−0.000789 −0.002274 0.1716685

 ρ̃ =

0.829771 −0.414713 −0.024469

0.220326 0.2561583 −0.031291

−1.15058 −0.708053 0.441873

 .
In the data, FX interventions are negatively correlated with portfolio outflows at σB∗

P ,B∗
M
=

−0.3077, which is directionally consistent with the optimal policy.

Calibration of the subjective discount factor β In the specification with an exogenous

state process that accounts for the observed FXI regime (see above), we choose β such that

the model matches the mean of the observed net foreign asset position as a percentage of

annual GDP, which is 2%. The value of the subjective discount factor that matches this

moment is β = 0.9871.
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Calibration of financiers’ risk aversion ω The target for the calibration of financiers’

risk aversion is an average FX market depth of ωσ2 = 0.05 in the observed economy. This

condition holds for ω = 28. Note that changing the financiers’ risk aversion not only has

implications for the endogenous variables in the model, but is also associated with a change

in the estimated (exogenous) portfolio outflow process B∗
P,t, since ω enters the risk sharing

wedge that we use to calculate these flows. As is evident from (15), higher risk aversion

ω makes FX markets more shallow, magnifying the effect of portfolio outflows on the risk

sharing wedge. Therefore, a given level of fluctuations in the risk sharing wedge can either be

explained by more volatile portfolio outflows and deeper FX markets or less volatile portfolio

outflows and more shallow FX markets.

C Simulation Details

Derivation of the Consumption Equivalence Letting κ be the additional fraction of

consumption that households in the benchmark economy b will have to receive to make them

indifferent to moving to an economy with the alternative policy p, we have

∞∑
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Next, using

Vi (B
∗, S) =
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t=0

βtE0

[
u
(
Ci

t

)]
=
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t=0

βtE0

ï
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ò

for i ∈ {b, p} we obtain

κ =

Å
Vap (B

∗, S)

Vb (B∗, S)

ã 1
1−σ

− 1.

We weigh the value functions with the stationary distribution of the exogenous state process

Ṽi (B
∗) =

∑
S∈S

ψSVi (B
∗, S) ,
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where S is the set of all exogenous states S and ψS is the stationary probability of state

S, with
∑

S∈S ψS = 1. Finally, we impose the steady state net foreign asset position of the

benchmark economy B∗ = B
∗
as the initial condition to arrive at

κ =

Ñ
Ṽap
Ä
B

∗
,S
ä

Ṽb
Ä
B

∗
,S
ä é 1

1−σ

− 1.

Solving for the first-best Given exogenous states S = {YT , YN , B∗
P}, the unconstrained

planner solves

V (B∗, S) = max
B∗′

¶
u(R∗B∗ + YT −B∗′, YN) + βESV (B∗′ , S ′)

©
,

subject to the market clearing conditions and a lower bound on bond holdings B∗

B∗ ≤ B∗′ ≤ R∗B∗ + YT .

Note that we also impose the same lower bound B∗ when computing all other policy regimes,

but it is never binding in these cases since the economy is already subject to a stricter implicit

borrowing limit associated with the lower bound on FX reserves. However, in the first-best,

the latter constraint does not exist since the central bank is allowed to take a negative

position in foreign currency bonds.
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Additional Simulations Figure C.1 presents the paths of selected macroeconomic vari-

ables in an average episode of a fall in tradable endowment.

Figure C.1: Episodes of negative endowment shocks in the tradable sector

Notes: The figure depicts the average model response in episodes in which tradable endowment decreases
relative to nontradable endowment. One period corresponds to one quarter and period 0 coincides with the
tradable endowment trough.

52



Figure C.2 compares outcomes during the capital outflow episode considered in Figure 5 for

the policies discussed in Section 5.

Figure C.2: Episodes of portfolio outflows under different policy regimes

Notes: The figure depicts the average model response in episodes of portfolio outflows for different policy
regimes. One period corresponds to one quarter and period 0 coincides with the peak outflow.
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